Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Copper (Cu) interconnects are an increasingly important bottleneck in integrated circuits due to energy consumption and latency caused by the notable increase in Cu resistivity as dimensions decrease, primarily due to electron scattering at surfaces. Herein, the potential of a directional conductor, PtCoO2, which has a low bulk resistivity and a distinctive anisotropic structure that mitigates electron surface scattering is showcased. Thin films of PtCoO2of various thicknesses are synthesized by molecular beam epitaxy (MBE) coupled with a postdeposition annealing process and the superior quality of PtCoO2films is demonstrated by multiple characterization techniques. The thickness‐dependent resistivity curve illustrates that PtCoO2significantly outperforms effective Cu (Cu with TaN barriers) and Ru in resistivity below 20.0 nm with a more than 6x reduction compared to effective Cu below 6.0 nm, having a value of only 6.32 μΩ cm at 3.3 nm. It is determined that grain boundary scattering can still be improved for even lower resistivities in this material system through a combination of experiments and theoretical simulations. PtCoO2is therefore a highly promising alternative material for future interconnect technologies promising lower resistivities, better stability, and significant improvements in energy efficiency and latency for advanced integrated circuits.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Helium atom scattering and density-functional theory (DFT) are used to characterize the phonon band structure of the (3 × 1)-O surface reconstruction of Nb(100). Innovative DFT calculations comparing surface phonons of bare Nb(100) to those of the oxide surface show increased resonances for the oxide, especially at higher energies. Calculated dispersion curves align well with experimental results and yield atomic displacements to characterize polarizations. Inelastic helium time-of-flight measurements show phonons with mixed longitudinal and shear-vertical displacements along both the ⟨[Formula: see text]⟩, [Formula: see text] and ⟨[Formula: see text]⟩, [Formula: see text] symmetry axes over the entire first surface Brillouin zone. Force constants calculated for bulk Nb, Nb(100), and the (3 × 1)-O Nb(100) reconstruction indicate much stronger responses from the oxide surface, particularly for the top few layers of niobium and oxygen atoms. Many of the strengthened bonds at the surface create the characteristic ladder structure, which passivates and stabilizes the surface. These results represent, to our knowledge, the first phonon dispersion data for the oxide surface and the first ab initio calculation of the oxide’s surface phonons. This study supplies critical information for the further development of advanced materials for superconducting radiofrequency cavities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
